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a  b  s  t  r  a  c  t

The  ability  of  a  chromatographic  method  to  successful  separate,  identify  and  quantitate  species  is  deter-
mined  by  many  factors,  many  of which  are  in  the  control  of  the  experimenter.  When  attempting  to
discover  the  important  factors  and  then  optimise  a response  by  tuning  these  factors,  experimental
design  (design  of experiments,  DoE)  gives  a  powerful  suite  of  statistical  methodology.  Advantages  include
modelling  by  empirical  functions,  not  requiring  detailed  knowledge  of  the  underlying  physico-chemical
properties  of  the  system,  a defined  number  of  experiments  to  be  performed,  and  available  software
to  accomplish  the  task.  Two  uses  of  DoE  in  chromatography  are  for  showing  lack  of  significant  effects
in  robustness  studies  for method  validation,  and  for  identifying  significant  factors  and  then  optimis-
ing  a  response  with  respect  to  them  in  method  development.  Plackett–Burman  designs  are  widely  used
in  validation  studies,  and  fractional  factorial  designs  and  their  extensions  such  as  central  composite
lackett–Burman design
entral composite design
ox–Behnken design
ixture design
oehlert design

designs  are  the  most  popular  optimisers.  Box–Behnken  and  Doehlert  designs  are  becoming  more  used
as  efficient  alternatives.  If it is not  possible  to practically  realise  values  of  the  factors  required  by  exper-
imental designs,  or if there  is  a  constraint  on  the  total  number  of  experiments  that  can  be  done,  then
D-optimal  designs  can  be  very  powerful.  Examples  of  the use  of  DoE  in  chromatography  are  reviewed.
Recommendations  are  given  on how  to report  DoE  studies  in  the  literature.
actorial design
ractional factorial design © 2012 Elsevier B.V. All rights reserved.
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1. Introduction

Two  decades ago I asked an eminent professor who had just

given a major lecture at my  university if he used experimental
design to optimise the parameters of his syntheses. After a look of
total blankness he answered “I have many PhD students. They work
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ery hard”. It is unlikely that a similar response would be given
oday, and not because PhD students are less diligent than their
orebears. The need to maximise the efficiency of scientific discov-
ry, in order to minimise waste and cost, has caused researchers
o do smarter experiments that give the most information possible
ith the fewest experiments. While the classic theories of experi-
ental design have been around since the middle of the twentieth

entury, and we can find early reviews in the analytical chemical
iterature, from Deming [1] and Schoenmakers [2],  in the late 1980s,
doption of DoE1 methods in chromatography research have seen
ncreased activity only in the past decade (see Fig. 1).

One of the earliest references is a fully-fledged use of a facto-
ial design to optimise a system that was modelled by an early
omputer, complete with three-dimensional response surface [3].
ince this time the methodology has remained much the same with
actorial, fractional factorial and composite designs being popular.

In this paper after a brief explanation of the approach taken
y DoE over other optimisers, the different aspects of a chromato-
raphic separation that have been subjected to experimental design
ill be reviewed. There is some overlap with other methodology,

or example mass spectrometry or sampling and extraction, but this
eview will mostly be confined to chromatography.

. Design of experiments

The approach taken by the suite of methods that may  be
lassed as experimental design is that multivariate data can be

tted to an empirical function, usually linear or quadratic with

nteraction terms, which can be used to provide information
bout the system (maxima and minima, trends as parameters are

1 The use of statistical methodology to design experiments and analyse data is
ermed “design of experiments” or “experimental design” and has the acronym DoE.
f experiments” or “experimental design” and chromatography (search conducted

changed, etc.). Statistical theory is used to choose values of each
factor to generate the data so as to maximise the information about
the parameters of the function. Randomisation of the order of
experiments ensures, as far as possible, any uncontrolled variables
(for example, temperature of the laboratory) contribute to the
repeatability variance and do not affect the results in a systematic
way. Out of the myriad books on the theory of experimental design
I suggest the classic 1976 book by Box, Hunter and Hunter “Statis-
tics for experimenters” which was published in a second edition
in 2006 [4],  and chapters 21–25 of Massart et al.’s equally classic,
in chemistry, “Handbook of Chemometrics and Qualimetrics” [5].
In the context of quality assurance in an analytical chemistry
laboratory chapter 3 of Hibbert is also a readable introduction [6].

2.1. Terminology of experimental design

Because the roots of the statistical description of experiments
lie in sociological and operations research the terminology is not
always obvious to a chemist. The definitions below are given in the
style of the International Vocabulary of Metrology (VIM), where
definitions of basic concepts in measurement are found [7].

2.1.1. Design of experiments
2.1.1.1. Experimental design. Statistical technique for planning,
conducting, analysing, and interpreting data from, experiments.

2.1.1.2. Response. Measured or observed quantity that is the sub-
ject of study or optimisation.

Example: chromatographic response factor, retention time,
number of theoretical plates.
2.1.1.3. Factor. Quantity that affects a response
Notes: (1) Factors are considered as controlled or uncontrolled,

depending on whether the levels of the factor can be set in the DoE.
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andomisation of the order of experiments might ensure that the
ffects of uncontrolled factors will contribute to the repeatability
ariance of the response.

(2) Factors can take discrete or continuous values. Example col-
mn  temperature, concentration of acetonitrile, stationary phase.

(3) Synonyms are variable, predictor and parameter.

.1.1.4. Level of a factor. Value of a factor that is prescribed in an
xperimental design.

Notes: Designs are named by the number of levels chosen for a
actor, e.g. two-level, three-level design.

Examples: temperature: 20, 25, 30 ◦C; column: C8, C18; gradient
ime: 1, 3, 5 min.

.1.1.5. Response surface. Relationship of a response to values of one
r more factors.

Notes: (1) The surface is usually a plot in two or three dimen-
ions of the function that is fitted to the experimental data.

(2) Response surface methodology (RSM) is used to describe the
se of experimental designs that give response surfaces from which

nformation about the system is deduced [8].

.1.1.6. Model. Equation that relates a response to factors
Notes: (1) A model can be empirical, which is chosen for the

athematical form, or is based on a theoretical understanding of
he process that gives the response. Empirical models based on
olynomials of the factors are described by the order of the poly-
omial, e.g. first-order, second-order.

(2) If the equation represents all effects of the system, the dif-
erence between the model prediction and the measured response
s random variance, usually given the symbol ε.

Examples: (1) Krier et al. reported an optimisation of an HPLC
ethod for the analysis of the drug sulindac [9].  The response was

he logarithm of the retention factor (k), and was optimised as a
unction of the duration of the initial isocratic step (P), the mass
raction of acetonitrile at the beginning and end of the gradient (cl
nd cu), and the gradient (g).

og(k) = ˇ0 + ˇ1P + ˇ2cl + ˇ3c2
l + ˇ4cu + ˇ5c2

u + ˇ6g + ˇ7g2

+ ˇ8clP + ˇ9clP + ˇ10gP + ˇ11cuP + ˇ12clg + ˇ13cug + ε

his is a second-order model in g, cl and cu and first-order in P.
(2) Theoretical and empirical models of aspects of the mixed-

ode separation of anionic and cationic pharmaceutically related
ompounds was reported by Zakaria et al. [10]. Peak width was
odelled by a peak compression approach which has a theoreti-

al equation, while analyte retention and methanol content were
odelled by linear and quadratic functions.

.1.1.7. Effect. Coefficient of a term in a model.
Notes: The main effect is the coefficient of the term in the first

rder of a factor. Interaction effects are coefficients of products of
inear terms, e.g. two-way interaction, three-way interaction.

Example: In the example of Krier (see definition of model)  ˇ1, ˇ2,
4, and ˇ6 are main effects, ˇ3, ˇ5, and ˇ7 are second order effects,
nd ˇ8 to ˇ13 are two-way interaction effects.

.1.1.8. Factorial design. Experimental design in which the runs are
ombinations of levels of factors.

Notes: (1) full factorial designs have every possible combination

f factors at the designated levels. There are Lk combinations of k
actors at L levels.

(2) Fractional factorial designs are a specific subset of a full
esign.
. B 910 (2012) 2– 13

Other experimental designs include Plackett–Burman, central
composite, Box–Behnken, Doehlert, D-optimal, G-optimal, and
mixture designs. These will be described in the course of the review.

2.2. Why  experimental design?

2.2.1. Optimisation strategies
In any modelling and optimisation exercise there is an initial

decision to be made between empirical approaches or ones that use
scientific knowledge about the system under study. For example
Zakaria et al. modelled the electrokinetic chromatographic sep-
aration of mixtures of organic anions and cations using mixed
pseudo-stationary phases using the complex equilibria that per-
tained in the system [11]. Calculated mobility coefficients were
fitted to observations with equilibrium constants as factors. The
availability of credible theoretical models should always be con-
sidered.

However in the case where such theoretical modelling is not
feasible or is overkill in a system that simply requires optimising,
DoE has the advantage of providing recipes of experiments that are
independent of the system itself. An example of a modelled system
that has generated software to predict retention times of ions in
ion chromatography is given by Madden et al. [12]. Even when a
model is available that is clearly not quadratic, DoE can still give a
good optimum with careful choice of design points. DoE also has
the advantage over iterative estimators such as Simplex that the
number of experiments is determined before any work is done.
Assuming the factors and factor levels are chosen appropriately,
then the outcome is assured with a known effort. This advantage
is particularly useful in modern systems with fully programmable
systems with autosamplers in which a run can be set up in the
evening and results are available in the morning. It is the opinion of
the author (and one reviewer) that DoE should usually be preferred
over Simplex.

2.2.2. DoE versus change one at a time
It is often argued that DoE is superior to the traditional change-

one-at-a-time approach, and this is usually so when a response is
being optimised. If the factors in the design are correlated, that is if
the change in response to a change in a factor level depends on the
level of another factor, then it is unlikely that the optimum will be
discovered and more experiments than necessary will have been
done (see Fig. 2).

It can be seen from Fig. 2(a) that for a response surface that
indicates there are interactions between the factors (independent
factors lead to a circular response surface, or ellipse oriented along
the axes), the change-one-at-a-time approach does not even reach
the true optimum. However the real value of experimental design is
seen in Fig. 2(b) in which the space of the factors is clearly covered
by the design (here a central composite design). Information about
the response surface will be much greater from the design than the
simple approach in Fig. 2(a).

2.3. Kinds of problems informed by experimental designs

There are two  kinds of chemical problems that need experimen-
tal design for their solution. The first is to discover which factors
may  significantly affect the response of an experiment, and the
second to find factor values that optimise the response.

2.3.1. Screening and robustness studies

The object is to perform a minimum number of experiments on

a maximum number of factors. In the terminology of DoE what is
needed is a main effects model with a highly fractionated design.
The minimum number of levels is two, and apart from fractional
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Fig. 2. (a) Change one at a time optimisation (open points) with best experiment
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closed point) and true optimum (star) on a hypothetical response surface that
hows correlation between factors. The filled point shows the optimum. (b) A central
omposite design.

wo-level designs, possibly the most used designs are due to Plack-
tt and Burman. For 4n experiments, the main effects of up to
n − 1 factors can be estimated 2n times. Such a screening design

s used in two scenarios. First, these designs are done as a prelude
o an optimisation, to make sure that factors being investigated
o indeed significantly contribute to the response. Many factorial
nd fractional factorial designs can be embedded within the sub-
equent optimisation, thus further saving on runs to be performed.
econdly, during method validation, ruggedness (different normal
onditions) or robustness (small changes introduced deliberately)
tudies are typically done with Plackett–Burman designs. Because
he expected outcome is no significant change of the response,
llowing the claim of a rugged/robust method, many factors can
e screened without concerns about interacting and non-linear
ffects. A main effects model will suffice.

A main effects model looks like

 = ˇ0 +
i=k∑

i=1

ˇixi + ε (1)

And with interactions

 = ˇ0 +
i=k∑

i−1

ˇixi +
i=k∑

i=1

j−k−1∑

j−i

ˇijxixj + ε (2)
.3.2. Choice of response
Chromatography is full of trade-offs and an optimum separation

epends on the wider problem with considerations such as time,
Fig. 3. Response surfaces as functions of two  factors. (a) Having a maximum
response, (b) having no maximum in the space of the factors and (c) having a plateau.

cost, required measurement uncertainty, that is the use to which
the analytical information is to be put. An advantage of DoE is that
multiple responses can be measured (resolution, time, throughput)
and models developed that arrive at the desired overall optimum
without extra experiments.

2.3.3. Optimising responses
Within the span of the values of factors in an experiment there

will be better response values and not so good ones. Optimisation
is the process of discovering where the best values lie. There is not
always a nice single maximum of a function that can be discov-
ered (see Fig. 3). Often the response plateaus and there is an area
of response surface with approximately the same value (Fig. 3c).
Sometimes the function shows a saddle with maximum values at
the edges (Fig. 3b).

For chromatographic separations it is important to have an
acceptable response that meets minimum criteria and so the aim
is often to locate that region (e.g. high pH, lower temperature)

rather than find the absolute optimum. This makes DoE very pow-
erful when the polynomial function does not fit the data perfectly,
but does describe the response sufficiently to locate an acceptable
region.
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Table  1
Factor levels for the 8-experiment, 7-factor Plackett–Burman design. ‘+’ represents
one level and ‘−’ the second.

Factor A B C D E F G

Expt.
1 + + + − − + −
2  − + + + − − +
3  + − + + + − −
4  − + − + + + −
5  − − + − + + +

q

R

2

f
t
w
i
c
t
f
t
T
o

s
o
a
u
v
t
o
f
c
t
n
i
a
a
a
n
r
u
f

2

a
v
g
o
p
a
o
m
o

6 + − − +  − + +
7 +  + − − + − +
8  − − − − − − −

In order to have the possibility of a maximum (or minimum)
uadratic terms are needed

 = ˇ0 +
i=k∑

i−1

ˇixi +
i=k∑

i=1

j−k−1∑

j−i

ˇijxixj +
i=k∑

i=1

ˇiix
2
i + ε (3)

.4. Choosing factors and factor levels

Some thought must be given before starting a design as to which
actors will be chosen. Factors to be studied may  be obvious from
he nature of the system. Ruggedness tests in method validation
ill have had the factors for study prescribed in the protocol [13]. If

t is known that a factor has a great effect of the separation (perhaps
olumn temperature) there is no point in discovering this informa-
ion in a screening design. It can be included immediately in the
actors for optimisation. Discrete valued factors such as column
ype might be studied separately, rather than as part of a design.
hus mobile phase composition, flow rates and gradients might be
ptimised for a C8 column and then for a C18 column.

The choice of factor levels in a design is most important, pos-
ibly more so than the design itself. Obtaining information using
nly a small number of factor levels is a strength of DoE, but also

 potential weakness. Each level must be appropriate and lead to
seful information. Values too close together do not allow sufficient
ariation in the response to be observed (for example points up on
he plateau of Fig. 3(c)). However points that are at the extremes
f a reasonable range will give poor responses that might not dif-
er from each other (for example extremes in Fig. 3(a)). Not all
ombinations of factor levels may  be practical. Solubility limita-
ions can lead to combinations of solvent compositions that will
ot allow high loading of a salt. For example Guo et al. in optimis-

ng acetonitrile mass fraction, ammonium acetate concentration
nd column temperature in the hydrophilic chromatography sep-
ration of organic acids report that two of the experiments (85%
cetonitrile and 40 mM ammonium acetate concentration) could
ot be performed [14]. Although the authors proceeded with the
est of the design, it would have been better to choose other val-
es, or go to a design that can accommodate inaccessible areas of
actor space (such as a D-optimal design).

.5. Coded factor levels

Experimental designs are often written in terms of coded vari-
bles. For example a design that requires only two  values of a
ariable (so-called ‘two-level’ design) factor values are usually
iven as a series of +1 and −1 indicating whether one value (+1)
r the other value (−1) is to be chosen. (See Table 1 for an exam-
le of this.) There are mathematical reasons for this practice, but

lso a practical use is that designs can be written independently
f the particular factors under study. For designs where there are
ore than two  levels, the values indicate the relative magnitude

f the levels. For example in a circumscribed two-factor central
. B 910 (2012) 2– 13

composite design (see Section 2.7.2) the five coded levels are −√
2,

−1, 0, +1, +
√

2. Suppose the factor were temperature and the range
to be studied was  decided to be 50–100 ◦C then the required design
points would be: 50, 57, 75, 93, 100. Note that this can only be done
for continuous variables that can be set a predefined values.

2.6. Replication and randomisation

Measurements of responses are contaminated by random vari-
ability, and this feeds through to estimates of coefficients of models
(effects) and locations of optima. When deciding on the signifi-
cance of otherwise of effects, the values must be compared with the
repeatability variance of the measurement. This assumes that the
experiments in the design are performed in a short period of time on
the same instrument by the same operator, that is under repeata-
bility conditions of measurement (VIM 2.20 [7]). The repeatability
variance might already be known from quality control measure-
ments, but usually experiments to estimate the random variance
are part of the design. Every experiment may be duplicated, but
typically multiple experiments are performed at the centre of the
design. How many are deemed appropriate tends to vary. Review-
ing published studies we  find 12 design points plus 4 centre, and in
the same study 18 plus 3 [15], 19 and 3 [16], 15 and 2 [14], 10 and 3
[17], 54 and 4 [9],  8 and 5 [18], 27 and 2 [19], 38 and 12 [20], 17 and
3 [21], 12 and 3, 31 and 7, and 20 and 6 [22]. Having established
the repeatability variance, estimates of effects can be compared
with this value by Student’s t-tests at the appropriate degrees of
freedom. For designs that require specific numbers of factors (for
example Plackett–Burman, 4n − 1, i.e. 3, 7, 11 factors), the number
can be made up using so-called dummy  factors. These are factors
that cannot possibly have an effect on the response, for example
rotating clockwise before commencing the run as one level and
rotating anti-clockwise as another level, or singing progressively
different verses of your national anthem at your experiment. If the
assumption that the activity cannot change the response, the vari-
ance of the measured values of the main effects of these dummy
factors must be an estimate of the random variance.

Because the factor values are changed in a systematic way, it
is important that the order of experiments is randomised. This
negates any spurious systematic effect that would be manifested
with the non-random order in time of the experiments, and ensures
that the estimates of repeatability variance properly reflect the
random aspects of the process.

2.7. Kinds of experimental design

Although there are many different kinds of design, they can be
distinguished by the model that is derived (linear or quadratic,
with or without interactions), constraints on factor levels, and
the purpose of the study (screening, optimisation). Many designs
(orthogonal designs) vary the factors independently of each other,
which eliminates correlations among the factors.

2.7.1. Factorial designs
The workhorse of DoE, factorial designs identify experiments at

every combination of factor levels. There are Lk combinations of L
levels of k factors. In full factorial designs (see Fig. 4) every exper-
iment is performed, while for fractional factorial designs a specific
subset is performed that allows calculation of certain coefficients
of the model. Two-level designs are chosen for screening factors
and can give main and interaction effects, but not higher orders.
Fractionation leads to designs that give main effects only with

fewer runs. Calculation of effects in two  level designs is easy and
can be performed in a spread sheet. If the two levels are coded +1
and −1, then the column of +1 and −1 under each factor (see for
example the columns in Table 1) is multiplied by the response for
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Fig. 4. Full-factorial designs. (a) Two-factor, two-level design and (b) two-factor
three-level design. Each point represents the factor values for one experiment (run).
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Fig. 7. Dohlert design for two factors. Each point represents the factor values for
one experiment (run).

deciding the levels, if ‘−’ is allocated to the base level of the factor,
then ‘+’ is this base plus a small change that is being investigated
as part of the robustness study. Note that the change can be an
increase or a decrease. The main effect that is obtained from the
ig. 5. Circumscribed central composite design for two factors. Each point repre-

ents the factor values for one experiment (run).

ach experiment. The product is summed and divided by half the
umber of experiments. This is the main effect for the factor. For an

nteraction effect a column is created that is the product of the level
odes and the procedure outlined above is applied to this column.
.7.2. Plackett–Burman designs
Plackett and Burman published their paper in 1946 [23], and

hese have become particularly popular for robustness tests in

ig. 6. Box–Behnken design for three factors. Each point represents the factor values
or  one experiment (run).
Fig. 8. Example of a D-optimal design for two  factors and 9 runs, where the lower
right triangle of the design is not accessible (i.e. experiments cannot be performed
with these combinations of factor levels).

method validation because one of the runs requires the base level
of each factor. A Plackett–Burman design requires 4n experiments
to be performed to investigate a maximum of 4n − 1 factors at two
levels. For example there are eight experiments in the seven-factor
design in Table 1, with the two levels designated ‘+’ and ‘−’. When
Fig. 9. (a) Mixture design for three components whose value sum to 100% and (b)
the plane of the design in three-dimensional factor space.
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Table  2
Coded factor levels for the first experiment in a Plackett–Burman experimental
design. The design gives the main effects of 4n − 1 factors in 4n experiments. See
Section 2.7.2 for details of generating the design.

n Coded factor levels for the first experiment

2 + + + − − + −
3 + + − + + + − − − + −

a
f
d
t
e
b
a
T
w
T

within the space of the factorial design (inscribed design) or they

T
S

T
R

4  + + + + − − − − − − + + + − +
5  + − + + − − − − + − + − + + + + − − +

nalysis of the DoE is an estimate of the change in response as the
actor goes from the ‘−’ level to the ‘+’ level. The incorporation of
ummy  variables is discussed in Section 2.6,  and how to calculate
he effect in Section 2.7.1. If one of the rows of coded factor lev-
ls of a Plackett–Burman design is known, the remaining rows can
e generated by cycling the end code to the beginning of the row

nd moving the rest of the codes one place to the right. Thus in
able 1, the first row is + + + − − +  − and the second row now starts
ith the last ‘−’ with the other codes moved along: − + + + − − +.

he sequence ends with all ‘−’. (If the process is repeated for the

able 3
oftware used for experimental design.

Software Company and reference 

Design-Expert Stat-Ease Inc., http://www.statease.com/ 

Fusion  Pro S-Matrix Corporation, http://www.smatrix.com/ 

JMP  SAS Institute Inc., http://www.sas.com/ 

Matlab  The Mathworks Inc., http://www.mathworks.com.au 

MINITAB Minitab Inc., http://www.minitab.com 

Modde  Umetrics, http://www.umetrics.com/modde 

Nemrod-W LPRAI, Marseille, France
http://www.nemrodw.com/html-US/design-of-experiments.html

Origin  Microcal Software, http://www.originlab.com/ 

R Revolution Analytics http://www.revolutionanalytics.com/ 

SPSS  IBM, http://www-01.ibm.com/software/analytics/spss/ 

Statgraphics Statpoint Technologies, http://www.statgraphics.com/ 

STATISTICA StatSoft, http://www.statsoft.com 

Unscrambler CAMO AS, http://www.camo.com/ 

Virtual  Column ACROSS and the University of Tasmania, http://www.virtualcolum

able 4
eports of the use of DoE in method validation (robustness studies) of chromatographic t

Method/analyte DoE 

Review 

HPLC-UV process-related impurities in pridinol
mesylate

Fractional factorial 34-2

HPLC-UV (2S,3R)-2-amino-3-octadecanol
hydrochloride as anticancer drug

Plackett–Burman with 6 factors and

HPLC-fluorescence amyloid � (A�)  protein Plackett–Burman with 6 factors and
centre points added

HPLC-UV immediate-release low-dose tablet
formulation

Split-plot robustness design with 1
straddle the nominal values.

HPLC omeprazole and related compounds in
formulation

Paper not available 

HPLC-fluorescence + pre-column derivatisation
Pregabalin, gabapentin and vigabatrin in
human serum

Plackett–Burman with 6 factors, 12
centre points

Isocratic HPLC-DAD anti-epileptic drugs Fractional factorial design, 7 factors
points (11 runs)

HPLC-UV small molecule drug product Plackett–Burman 7 factors in 8 run
. B 910 (2012) 2– 13

eighth row the first row is regenerated.) Starting sequences for
Plackett–Burman designs are shown in Table 2).

2.7.3. Central composite designs
Two-level designs can only lead to linear models of responses

and so cannot give information about maxima or any non-linear
relationships. However a drawback of full factorial designs at lev-
els greater than two, is the great number of experiments that must
be done. Designs that allow greater numbers of levels without per-
forming experiments at every combination of factor levels cover the
factor space near the centre with more points than at the periphery.
One such design is the central composite design, so named because
it combines a two-level factorial design with a star design and cen-
tre points. The star and factorial points can lie equidistant from the
centre (circumscribed design, see Fig. 5), or the star points can lie
can lie on the faces of the factorial design points (faced). Central
composite designs require Lk + Lk + nc where nc are the number of
replicate centre points chosen.

Comments Used by

DoE software [37–41]
DoE software [14,42,43]
General statistical software. See book on DoE
in SAS [44]

[19,20,45–49]

General mathematical and computing
software. Statistics Toolbox contains DoE
routines.

[8,34,36,50–53]

General statistical software [52,54–59]
DoE software [15,60,61]
Windows OS only. Optimal designs. [17,62,63]

General data analysis and graphing software [64]
Open source general software [9,65,66]
General statistical software [38,67]
General statistical software [68,69]
General statistical software [16,70]
Chemometric and DoE software [71,72]

n.com Chromatographic modelling software [12]

echniques.

Factors (levels) Ref.

[30]
pH (6.3, 6.4, 6.5), fraction of modifier (78, 80, 82%),
T (27, 30, 33 ◦C), flow rate (0.95, 1.00, 1.05 mL/min)

[38]

 1 dummy Mobile phase: xACN, pH, flow rate, Detector
wavelength, Column: T, type (levels not given)

[42]

 1 dummy. 3 Mobile phase: xACN (7, 9%), xMeOH(16.5, 18.5%), flow
rate (0.90, 1.1 mL/min) Buffer: mphosphate (15,
25  mM),  pH (7.4, 7.6) Column: T (20, 30 ◦C)

[73]

6 runs. Points Mobile phase: xACN (33,37%), pH (2.8,3.2), flow rate
(0.4, 0.6 mL/min) Column: T (35, 45 ◦C)

[74]

[75]

 runs and 2 Mobile phase: xACN (7, 9%), xMeOH(16.5, 18.5%), flow
rate (0.7, 0.9 mL/min) Buffer: mphosphate (15,
25 mM),  pH (7.4, 7.6) Column: T (20, 30 ◦C) (Note:
robustness study on sample preparation also).

[76]

 plus 3 centre Mobile phase: xACN (19.0, 20.0%), xMeOH(14.0,
15.0%), pH (6.6, 6.8), flow rate (0.8, 1.0 mL/min)
Buffer: mphosphate (20, 30 mM), mNaCl (10, 15 mM),
Column: T (43,47 ◦C) (Note: robustness study on
sample preparation also).

[77]

s Mobile phase: xACN (13, 17%), pH (2.8, 3.2), flow
rate 1.3, 1.7 mL/min), Buffer concentration (22,
28 mM)  �Detector (276, 280 nm) Column: T (35,
45 ◦C), type (‘symmetry’, ‘Zorbax’)

[78]

http://www.statease.com/
http://www.smatrix.com/
http://www.sas.com/
http://www.mathworks.com.au/
http://www.minitab.com/
http://www.umetrics.com/modde
http://www.nemrodw.com/html-US/design-of-experiments.html
http://www.originlab.com/
http://www.revolutionanalytics.com/
http://www-01.ibm.com/software/analytics/spss/
http://www.statgraphics.com/
http://www.statsoft.com/
http://www.camo.com/
http://www.virtualcolumn.com/
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Table  5
Reports of the use of DoE in optimising factors in chromatographic techniques ordered by design approach (FF = full factorial, CCD = central composite design, BB = Box–Behnken
design).

Method Analyte DoE method (factors/levels) Ref.

(a) Optimisations relying on factorial and central composite designs grouped by chromatographic technique
Fluid  extraction LC–MS Acrylamide in coffee CCD (3) [58]
GC-Ion mobility spectrometry Exhaled breath condensate FF (4/2) [79]
GC  × GC–MS C8 and C9 phenols FF (5/2), CCD (3) [80]
GC-FID with SPME Residual solvents in pharmaceutical products FF (3/2) [18]
GC–MS  Estrogenic compounds in environmental

samples
PB screen (8) then CCD (3) [21]

GC–MS  Extraction conditions of polycyclic aromatic
hydrocarbons in milk

FF (3/2) CCD (3) [67]

GC–MS  Drugs in urine FF (3/2) CCD (3) [57]
GC–MS  Metabolites Fractional factorial (6 factors in a 24 design) [34]
GC–MS  after membrane extraction Test compounds of different polarities FF(2/2 + 1/4) and fractional factorial (4 factors in a 23

design)
[63]

GC–MS with SPME Personal care products CCD (4) [50]
GC–MS  with SPME Pesticides Fractional factorial (7 factors in a 24 design with centre

points)
[48]

GC–MS  with stir-bar SE/thermal desorption Persistent organic pollutants FF (3/2) for extraction conditions [72]
GC–MS with stir-bar SE/thermal desorption Synthetic musks CCD (3) [68]
GC–MS/MS (large volume injection) PAH in airborne particles FF (4/2) for injection factors CCD (4) [22]
GC–MS/MS (large volume injection) Polyhalogenated compounds PB design (5) for MS  factors CCD (4) for injection

factors CCD (3) for extraction factors
[81]

HPLC-amperometric Compounds in mouse brain tissue Fractional factorial (5 factors in a 24 design) [82]
HPLC-DAD Drug design FF (5/2) [65]
HPLC-DAD Cannabinoid drugs FF (2/3 + 1/5) [83]
HPLC-DAD Sulindac FF (3/3, 1/2) [9]
HPLC-pulsed amperometric Polyribosyl-ribitol phosphate in complex

combination vaccines
CCD (3) [37]

HPLC-UV Tertiary alkaloids from plant FF (3/3) [19]
HPLC-UV Process-related impurities in pridinol mesylate FF (2/3) [38]
HPLC-UV Organic acids CCD (5) [46]
HPLC-UV Malaria drug screening FF (2/3 + 1/5) [66]
HPLC-UV Cephalosporins in plasma and amniotic fluid FF (3/2) [33]
HPLC-UV 2-Arylimidazoline derivatives FF (3/2) [64]
Hydrophilic interaction LC-UV Uric acids CCD (3) [43]
LC-evaporative light scattering Cellulose derivatives in pharmaceutical

formulations
FF (2/2 + 1/3) [59]

LC–MS  Estrogenic compounds FF (4/2) [84]
LC–MS  (semi-preparative) Cortisones FF (4/2 + centre 3/1) [15]
LC–MS  after supercritical fluid extraction Indole alkaloids from plant FF (4/2) [61]
LC–MS/MS 12 ionic per- and polyfluorinated alkyl

substances (PFAS) in fine airborne particulate
matter

CCD (4) optimising extraction parameters [54]

LC–MS/MS Siderophores CCD (5) [52]
LC–MS/MS after enzyme digestion Drug–protein adducts CCD-face centred (3) [20]
LC–MS/MS with microwave-assisted extraction Pesticides in air CCD (3) [56]
Micellar electrokinetic LC–MS Enantiomers of binaphthyl derivatives CCD (4) [85]
Micellar LC Test ionic compounds FF (4/2) [59]
Micellar LC–MS with SPE Flavonoids in honey FF (4/2) [70]
Molecular imprinted polymers Sulphonamide residues FF (3/3) [39]
Size  exclusion chromatography Molecular size distribution of natural organic

matter
CCD (3) [71]

Size  exclusion chromatography Complex organic mixtures FF (4) [86]
Supercritical fluid C Metoprolol and analogues CCD (3) [87]
UHPLC Acetyl cholinesterase inhibitors CCD (2) [40]

(b)  Box–Behnken and other optimising designs grouped by chromatographic technique. Design points are shown in two or three-dimensions for non-standard designs
Review Response surface designs [45]
Review D-Optimal, Doehlert, Mixture designs [28]
Review Box–Behnken [25]
Review Doehlert, Box–Behnken, CCD [8]
GC-ECD after single-drop ME  2,4,6-Trichloranisole in wine BB (2) [16]
GC–IDMS (headspace) Benzene in food Irregular factorial (4 factors, 15 runs) [88]
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Table  5 (Continued)

Method Analyte DoE method (factors/levels) Ref.

GC–MS Anabolic steroids Dohlert (2) [17]

GC–MS Metabolites D-optimal (5 factors, 33 runs) [34]

GC–MS SPME Non-steroidal anti-inflammatories D-optimal (7/2, 1/4) 21 runs [62]
GC–ToFMS Metabonomic compounds D-optimal (3 factors, 10 runs) [89]
HPLC-UV Sulindac Composite design (2/5 + 2/4) [3]

HPLC-UV Synthesis of thiol-modified silica 2 factor design [35]

HPLC-UV Test organic compounds D-optimal (4/3, 22 runs) [47]
HPLC-UV Test ionisable compounds D-optimal and G-optimal designs on 5 factors [36]
HPLC-UV Extracts of tea Mixture design (optimising extraction solvent and

mobile phase)
[90]

Hydrophilic interaction C-DAD Organic acids Composite design (3/5) [14]

Hydrophilic interaction C-DAD Organic acids BB (4) [41]
LC–MS  Acids Composite design for 3 factors in 14 runs [91]

LC–MS  (semi-preparative) Cortisones Square composite design (2/5) [15]

LC–MS/MS Protein in liver orthogonal array L25 (5/3) [55]
LC–MS/MS Geniposide and genipin L9 3-level, 4 factor Taguchi fractional design [92]

LC-UV Monolithic polymers as stationary phase D-optimal (5 factors, 17 runs) [93]
LC-UV–MS Iodination of obestatin Draper-Lin cube-star design [69]

Mixed mode chromatography Monoclonal antibody purification processes BB(5) [94]
Size  exclusion C-MS Synthetic polymers D-optimal (5/3, 30 runs) [51]
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.7.4. Box–Behnken design
A Box–Behnken design [24] has three levels (see Fig. 6) or more

nd can be applied to problems having three or more factors.
here are no factorial or extreme points and the design requires
k(k − 1) + nc points. This is fewer than the central composite design
nd for three factors the same as the Doehlert design. The use of
ox–Behnken designs over central composite was promoted by
erreira et al. in 2007 [25]. Use of Box–Behnken should be con-
emplated for systems with greater than two factors where the
ptimum is known to lie in the middle of the factor ranges (Fig. 7).

.7.5. Doehlert designs
Doehlert designs, unlike central composite and Box–Behnken

re not rotatable, i.e. they can give different qualities of estimates
or different factors. However they are very efficient and have dif-
erent numbers of levels for different factors. Thus factors that are
onsidered more important can be measured at more levels. The
esign attempts to fill the given factor space as uniformly as possi-
le. A Doehlert design requires k2 + k + nc points (Fig. 8).

.7.6. D-optimal designs
So-called optimal designs are becoming more popular and are

articularly useful when the factor space is not uniformly accessi-
le, perhaps when combinations of solvent composition and solute
oncentration are not possible. Another useful aspect is that the
umber of experiments is specified. These must be the minimum
equired to calculate the coefficients of the effects model (the num-
er of effects plus a constant term). The D-optimal [26] solution
nswers the question given a number of design points to choose
rom a total number, what is the optimal distribution of the points?
his can be shown to be when the determinant of X XT is max-
mised, where X is the matrix of design points and T denotes the
ranspose. Once a minimum design is analysed, further points can
e added to refine knowledge of the system that are guided by the
ame principle.

.7.7. Mixture designs
A special kind of design is used when the factors are constrained

y having to total some constant value. For example, in chromatog-
aphy a mobile phase has components that total 100%. Mixture
esigns address this issue. Three factors that sum to 100%, for exam-
le methanol, acetonitrile and water in a mobile phase [27] fix one
he components when the other two are chosen. The available space
ecomes a triangular plane in the three-dimensional factor space
Fig. 9).

.7.8. Software
Although many designs can be set up in a spread sheet and

ffects calculated, most researchers will use specialised software.
n terms of the basic designs and analysis, any validated software
hould do the job. Most statistical packages have a DoE compo-
ent and there are standalone products and add-ins for Microsoft
xcel (Microsoft® Office® 2010, Microsoft Corp., USA). Before any
oftware is used there should be some consideration of the most
ppropriate method and some awareness of the principles that the
oE is based on. If homemade software is used, it must be validated
sing known data, and this information must be made available
or review. Table 3 gives details of software used in the literature
eferenced by this paper.

. Review of DoE in chromatography
There have been some very good reviews of experimental design
n chromatography. Most notable of the general reviews is that
f Dejaegher and Vander Heyden [28]. Other reviews of more
ocussed scope are on validation and ruggedness and robustness
r. B 910 (2012) 2– 13 11

[29,30], capillary electrophoresis [31], Box–Behnken designs [25]
and optimisations in GC–MS [8]. Boulanger in a discussion of the
French guide from the Société Franç aise des Sciences et Techniques
Pharmaceutiques on validation of chromatographic bioanalytical
methods advised strongly the use of DoE [32].

The majority of uses of DoE in chromatography can be classed as
either method validation robustness studies or optimising method
conditions. Typically two, three or four factors are studied includ-
ing mobile phase composition (not always using a mixture design),
gradient parameters (initial and final composition, gradient of flow
rate), pH, temperature, injection volume, flow rate. As part of an
analysis using chromatography, there are other steps that can be
optimised such as extractions, and derivatisation, both which lend
themselves to DoE. In Tables 4 and 5 references are made to reports
of separations using DoE for method validation robustness test-
ing or optimisation, grouped by chromatographic method and DoE
approach.

It is seen that central composite designs are most popular for
optimisation, even when D-optimal designs (accessibility of fac-
tor space) or Box–Behnken or Doehlert designs (greater efficiency)
might be better (Tables 4 and 5).

4. Conclusions

With the greater availability of statistical software and the gen-
eral ability to batch multiple runs on modern instrumentation, the
increasing popularity of design of experiments is not surprising. The
present review does not claim to be comprehensive as many papers
report the use of DoE without creating keywords or going beyond a
brief description. Plackett–Burman designs are the best for robust-
ness studies where a small deviation from method conditions is
required and main effects only considered. Plackett–Burman can
also be used for screening designs, but has the drawback that it can-
not be embedded into an optimising design in the way  a two-level
factorial design can. The author has not seen this done, but build-
ing a D-optimal design on a completed Plackett–Burman design
might be an interesting approach. Central composite designs will
continue to be popular, but if extremes of the factor space are not
critical, then Box–Behnken or Doehlert designs should be consid-
ered. As discussed above, the choice of factors and levels is more
important that the design, (assuming the design can actually do the
intended job).

Finally I shall offer some advice about reporting DoE. Compiling
this review has made it very clear that many authors believe that
writing “design of experiments generated by software X was used
to optimise the chromatographic conditions” suffices. This is anal-
ogous to stating that “chromatography using an instrument from
company X was  used to analyse the samples” without mention-
ing the kind of chromatography, detector, conditions etc. On the
other hand, some papers in which DoE was used in optimisation
feel the need to rehearse the history of DoE, discussing the choice
of one method over another for what is a trivial application. In this
author’s opinion we should recognise that DoE is a well-known
chemometric tool that can be taken as granted, and so the follow-
ing information should be given either in the text or supporting
information without too much more elaboration:

• The name of the design (Plackett–Burman, D-optimal, etc.) with
an appropriate reference for the actual variant used.

• The name and details of the software used. If this is homemade
then there should be validation information available.
• The factors and their levels (in a table, see for example Table 1
[19]).

• The design, including replicates (in a table, see for example Table 1
[33], Tables 1 and 2 [34]).
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The response variables and their optimised values (predicted and
observed, in a suitable table).
The equation of the response model and calculated values of
effects with confidence intervals at stated probability. A confi-
dence interval is preferred to a statement of significance. (see for
example Table 2 [35]).
Response surfaces only if they show some feature of interest. Very
colourful, three-dimensional surfaces can be generated by most
software, but their use is limited to showing the effect of two
factors, and perspective views can be misleading. Graphs showing
points in a D-optimal design are useful (see for example Fig. 2 in
[36]).

At the end of the day a chromatographer can see if her exper-
mental conditions have been improved by optimisation, and this
s, perhaps, all that matters.
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